Guanidine hydrochloride-induced denaturation and refolding of transthyretin exhibits a marked hysteresis: equilibria with high kinetic barriers.
نویسندگان
چکیده
Fluorescence and circular dichroism spectroscopy as well as analytical ultracentrifugation and glutaraldehyde cross-linking were utilized to evaluate the tertiary and quaternary structural changes occurring on the denaturation and reconstitution pathways of transthyretin (TTR) as a function of guanidine hydrochloride (GdnHCl) concentration. These results demonstrate that the GdnHCl-mediated denaturation and reconstitution of TTR is reversible. However, the lowest GdnHCl concentration that dissociates and unfolds transthyretin does not allow the unfolded monomer to refold to tetramer at a rate that is measurable. As a result, there is a striking hysteresis observed upon comparison of the GdnHCl-mediated denaturation and reconstitution transitions. The TTR tetramer does not dissociate into unfolded monomer until the denaturant concentration exceeds 4 M GdnHCl, whereas unfolded monomeric TTR (denatured in 7 M GdnHCl) does not refold and assemble into a native tetrameric structure until the GdnHCl concentration is reduced to less than 2 M. These results imply that a significant kinetic barrier intervenes between the folded tetramer and unfolded monomer in both the denaturation and reconstitution directions at pH 7. A kinetics study of the denaturation of TTR as a function of GdnHCl concentration yields a first-order rate constant for unfolding of (9.0 +/- 7.5) x 10(-11) s-1, estimated by extrapolation of the rate constants for the tetramer to unfolded monomer transition as a function of GdnHCl to 0 M GdnHCl. This rate is very slow; as a result, wild-type TTR is predicted to be kinetically stable as a tetrameric quaternary structure once formed. These results imply that the rate of TTR dissociation and partial unfolding to the monomeric amyloidogenic intermediate under denaturing conditions may play a role in transthyretin-based amyloid diseases.
منابع مشابه
Protein folding pathways of adenylate kinase from E. coli: hydrostatic pressure and stopped-flow studies.
Adenylate kinase (AKe) from E. coli is a small, single-chain, monomeric enzyme with no tryptophan and a single cysteine residue. We have constructed six single-Trp mutants of AKe to facilitate optical studies of these proteins and to specifically examine the interrelationship between their structure, function, dynamics, and folding reactions. In this study, the effects of hydrostatic pressure o...
متن کاملKinetically robust monomeric protein from a hyperthermophile.
Equilibrium and kinetic studies were carried out under denaturation conditions to clarify the energetic features of the high stability of a monomeric protein, ribonuclease HII, from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII). Guanidine hydrochloride (GdnHCl)-induced unfolding and refolding were measured with circular dichroism at 220 nm, and heat-induced denaturation was stud...
متن کاملThe refolding of denatured rabbit muscle pyruvate kinase.
The refolding of rabbit muscle pyruvate kinase after denaturation by guanidine hydrochloride was studied. On dilution of the denaturing agent, enzyme activity is only partially regained. The extent of regain of activity is dependent on protein concentration, showing a marked decrease at higher concentrations. The failure to regain complete activity appears to be related to the formation of inac...
متن کاملKinetic and thermodynamic consequences of the removal of the Cys-77-Cys-123 disulphide bond for the folding of TEM-1 beta-lactamase.
Class A beta-lactamases of the TEM family contain a single disulphide bond which connects cysteine residues 77 and 123. To clarify the possible role of the disulphide bond in the stability and folding kinetics of the TEM-1 beta-lactamase, this bond was removed by introducing a Cys-77-->Ser mutation, and the enzymically active mutant protein was studied by reversible guanidine hydrochloride-indu...
متن کاملDenaturation of bovine carbonic anhydrase B by guanidine hydrochloride. A process involving separable sequential conformational transitions.
The denaturation and renaturation of bovine carbonic anhydrase B is a thermodynamically reversible process, uncomplicated by aggregation or disuhide bond formation. The reaction is less cooperative than is the unfolding and refolding of most globular proteins, in that distinct successive stages can be observed both in equilibrium and kinetic measurements. This enzyme is therefore ideally suited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 36 33 شماره
صفحات -
تاریخ انتشار 1997